Introduction to GPU

Shin Kee Chung, Linging Wen (UWA)
Kipp Cannon (Caltech)

What is GPU?

GPU stands for Graphics Processing Unit
Originally developed for graphics rendering

Its development is mainly driven by the
gaming market

CUDA (Compute Unified Device Architecture)

is the GPU programming language developed
by NVIDIA

AMD GPU was not tested due to the lack of
library support (such as FFT library)

GPU and CUDA

 Popular
— Over 100 million CUDA enabled GPU sold
e Easy to program using CUDA
— C and C++ Integration
— Sizeable computing libraries
— CUDA Matlab Plugins
e Cost effective
— S400-5S500 can provide teraflops performance

CUDA Common Library

e CUFFT (CUDA FFT)

e CUBLAS (CUDA Basic Linear Algebra
Subprograms)

 CUDA SDK (CUDA Software Development Kit)

http://www.nvidia.com/object/cuda_learn.html

http://www.nvidia.com/object/cuda sdks.html

http://www.nvidia.com/object/cuda_learn.html
http://www.nvidia.com/object/cuda_sdks.html

Some CUDA SDK Examples

— Monte Carlo Option Pricing
— FFT Based 2D Convolution
— Eigenvalues

— Matrix Multiplications

— N-body Simulation

CUDA in LAL - lalapps_inspiral

Developed by UWA-Caltech group
— Shin Kee Chung, Linging Wen (UWA), Kipp Cannon (Caltech)

Results:

— Replace FFTW in lalapps_inspiral by CUDA FFT and demonstrated a 4x
increase in speed overall using GeForce 8800 Ultra vs. 1 core of a 2.5
GHz Intel Core 2 Quad 9300 CPU.

— Implement chi-square statistic in lalapps_inspiral using direct calls to
CUDA's multi-FFT routines and data parallelism feature

— Demonstrated a 16x increase in speed overall in lalapps_inspiral with
the chi-square statistic turned on

Publication:

Chung S. et al. 2009, CQG, to be published, arXiv:0906.4175
Chung, S. 2008, Honours thesis, UWA
Chung, 2008 SURF report with Wen & Cannon

On going:

— CUDA template parallel lalapps_inspiral

>
(9]
\

P
T

w
(8}

w

Speedup factor (X times)

N
4]

1 5 1 | 1 | 1
0 1000 2000 3000 4000 5000 6000

Number of templates

lalapps_inspiral Speedup With CUFFT
We achieve more than 4 times speedup simply by applying CUFFT in LAL.

Chung et al. 2009, CQG (To be published)

—
-\I

7N

(vl

Speedup factor (X times)
S 2 N W r o o

0
I

8 | | 1 1 1 | |
0 100 200 300 400 500 600 700 800
Number of templates

lalapps_inspiral Speedup With
CUDA Chi-square Implementation

We modified the original Chi-square in lalapps_inspiral to utilize the
multi-FFT routines and data parallelism feature of CUDA.

We achieved more than 16 times speedup.

Chung et al. 2009, CQG (To be published)

CUDA In LAL — Current Status

Enable FFT package's CUDA back-end with
$./configure --with-cuda={path to cuda} ...

replaces all single precision FFTs in LAL/LALApps codes with
GPU-accelerated versions.

Works on

— Linux machines with CUDA installed.
— Macs machines with CUDA installed.

CUDA-based LAL/LALApps tested with

— GeForce 8500 GT (card purchased by D. Brown for testing)
— GeForce 8800 Ultra (Shinkee's development box at CIT)

— GeForce 8800 GTX, GTX 285 (UWA)

— GeForce 8600M GT on Mac OS X Leopard laptop

— GTX 295 (RMKI, Hungary)

“Test” = obtain correct output from lalapps_inspiral (fractional
error < 0.03% for Shinkee’s tests).

GPU Low-Latency Inspiral Search

UWA-Caltech collaboration

Applied to time-domain low-latency infinite impulse

response (IIR) filter

 Hooper et al. 2009, Budapest LSC Meeting LIGO-G0900770-v2
https://dcc.ligo.org/cgi-bin/private/DocDB/ShowDocument?docid=5333

Results:

* 5 times speedup is achieved

e Tested using GTX 285 and 2.4 GHz Intel Core 2 Quads 6600 CPU
(one core)

Future Work:

e Apply to stream-based time-domain low-latency pipeline LLOID
developed by Caltech LIGO group
— Insert GPU-enabled IIR filter
— Replace individual elements in LLOID with GPU-enable components

https://dcc.ligo.org/cgi-bin/private/DocDB/ShowDocument?docid=5333

GPU @ LSC

LSC GPU Discussion Group

— Mailing List
e GPU-Discuss@ligo.gwastro.psu.edu
e Still a starting phase in LSC

— ~30 subscribers, ~15 LSC institutions
» UWA, MPI/AEI, Northwestern, Caltech, LLO, RMKI Virgo
Group (Hungary), Tsinghua U. (China), PSU, UWM, UNH,
RIT, Umass, Cardiff, Birmingham, Columbia, ANU, U.
Michigan
— Wiki page:
e https://www.lsc-
group.phys.uwm.edu/daswg/wiki/GPUDevelopment

mailto:GPU-Discuss@ligo.gwastro.psu.edu
https://www.lsc-group.phys.uwm.edu/daswg/wiki/GPUDevelopment
https://www.lsc-group.phys.uwm.edu/daswg/wiki/GPUDevelopment

GPU @ LSC

e U. of Western Australia (UWA)

e Linging Wen, Shin Kee Chung*, Shaun Hooper, David Blair,
Amitava Datta
e GPU-enabled inspiral search pipeline (previous slides)

* Resource
— Tested on Geforce 8800, FX 1700, GTX 285, GTX 295 (on 1 card)

— International Center for Radio Astronomy Research (ICRAR), WASP center
at UWA, CSIRO GPU cluster (200 GPUs)

http://www.gravity.uwa.edu.au/gpu implementation.html

Caltech

* Kipp Cannon,
e GPU-enabled inspiral search pipeline and LLOID (previous slides)

e Support from the LIGO group

http://www.gravity.uwa.edu.au/gpu_implementation.html

GPU @ LSC

e AEI-Hannover: Einstein @ Home

* Bruce Allen, Reinhard Prix, Oliver Bock, Bernd Machenschalk,
Carsten Aulbert et al.

Hardware:

6 machines with two Tesla C1060 each (3 Intel, 3 AMD, all Debian Lenny x64)
1 machine with two GTX 285 (AMD, running XP32, Vista32 and Debian x64)

1 machine with one dual-GPU GTX 295 (Intel, running XP64, Vista64 and
Debian x64)

The ATLAS cluster is going to be extended by ~120 Tesla cards later this year
or early next year (available to LSC members, same resource policy as for
ATLAS itself)

GPU development

hierarchical search for continuous GWs in S5 data (development)
the search for binary pulsars in Arecibo radio data (improvement, public beta).

GPU @ LSC

e Northwestern

* Vicky Kalogera et al.
e 30-GPU cluster : “happy to make them available”
* benchmarking the SPINspiral MCMC code

 RMKI Virgo Group (Hungary)

* Debreczeni Gergely et al.
* Testing on NVIDIA GeForce GTX 295.
e Submitted proposals for GPU clusters to OTKA (“Hungarian NSF”)

e University of New Hampshire / NIKHEF

* Maurik Holtrop, Jo van den Brand
e Hardware: two GTX280 and one 8800 GT, Tesla cluster (future)
e Application: CW all sky search using quadratic filters.

GPU @ LSC

Tsinghua U. (China)

— Junwei Cao et al.

— Hardware
e GeForce 9800GTX

— Substantial non-LSC related GPU research has been done

* implemented a collection of algorithms using CUDA

— Confirm that CUDA is a good platform for computation-intense applications while performs not very
well for control-intense algorithms

e investigate different GPU programming models
— Confirm that only some GPU programming models are good extension of CUDA

designed and implemented a parallel Viterbi sequence finding algorithm on GPU
— More than one order magnitude is achieved

optimization GPU for finance application
— 100 fold speedup achieved

MapReduce framework (MARS) on GPU

— Currently planning to apply GPU to burst search using the Omega
pipeline

GPU @ LSC

UWM

Patrick Brady, Adam Mercer et al

Adam helps build system patches, committed LAL CUDA FFT
and working on committing GPU-enabled chi-square test

plan to deploy a substantial GPU testbed at UWM over the
next 6-12 months to enable larger scale prototyping of GPU
enabled codes for gravitational-wave astronomy.

Dwayne Giardina, Rupal Amin et al
built a workstation at LLO with a NVIDIA Tesla C1060
Compare a Matlab scripts with and without CUDA plugins

Acknowledgements

* Alan Weinstein, Patrick Brady and Sam Finn for
support

e |nputs from Adam Mercer, Oliver Bock, Jun-wei Cao,
Debreczni Gergely, Vivien Raymond, Reinhard Prix,
and Maurik Holtrop

e GPU-Discuss community

Appendix

GPU vs CPU

GPU

e |ts architecture adopts
parallel programming
naturally

e Less efficient in flow control

* Small cache size limits the
speed of memory access

CPU

Originally designed to
execute commands
sequentially

Very efficient in flow control

Huge cache size speed up its
memory access

=

mEEF e R
| i e 0 O I

 SEIRESEnEEnEEER

|
ALU [Al.u

IR NEEENEEEE

GPU

CPU

Comparison of CPU and GPU hardware

Diagram taken from the NVIDIA CUDA Programming Guide.

Graphics Cards Specification

GPU Card

GTX 285 (Single
GPU)

GTX 295
(Dual GPU)

Supercomputer
withupto 4
Tesla C1060

Peak
Performance

1062.72
GFLOPs

1788.48
GFLOPs

Upto 4
TFLOPs

1GB

1792 MB
(896 MB
each)

4 GB
each

Memory
Bandwidth

159.0
GB/sec

223.8
GB/sec

102 GB/sec
each

Number of
Processing
Cores

240

480 (240
each)

240 each

Max Power
Consumption

204W

289W

187.8W each

~ $400

~ $550

~ $8000

CUDA Quick Start Guide

o After installing CUDA following some simple
instructions from NVIDIA website:

— Write a simple “hello world” C program, and save
It as .cu extension

— Compile it using nvcc
nvcc —0 program _name program_name.cu

— This is already a CUDA program (although it is still
executed in CPU)

— Then we can start putting in kernel functions (that
runs in GPU) s

Example: Simple Number Inverter

I R R A

Il

I N N A

Example: Simple Number Inverter

C Program
int *run(int *data, 1nt length)
{

int 1;

return data;

Example: Simple Number Inverter

CUDA Program, multi-threaded execution R —
__global__ void invert(int *d_data, int length)

{
// Getting the thread id, block 1d and number of threads per block

int tx = threadldx.x;
int bx = blockldx.x;
int numThreads = blockDim.Xx;

[No loop is used]

// Inverting the element accessed by each thread
d _dataJbx * numThreads + tx] = 1 - d_data[bx * numThreads + tx];

¥ .
))] Host Function
int *run(int *data, Int length)

{

// Perform inversion, assuming that total threads = array length
invert<<< blocks, threads >>>(d_data, length);
// Then copy d data to data

return data;

GPU in Science: example

N-body Simulation

Pre-CUDA:

— Portegies Zwart et al. 2007
New Astron., 12, 641

CUDA:

— Belleman et al. 2008 New
Astron., 13, 103
GeForce 8800GTX with
CUDA runs at about the
same speed as GRAPE-6Af
for N > 10°

Radio Astronomy

e GPU enabled correlator

— Harris et al. 2008
Experimental Astron., 22, 129

e > 100x achieved
 |nternational Center for

Radio Astronomy Research
(ICRAR), UWA and Curtin

Possible Future Application

lalapps inspiral is unable to scale up to Adv.LIGO analysis
requirements; a re-work of the internal data management is
required.

One project to investigate solutions is “gstlal”, a project to
combine LAL with GStreamer, a Free stream-based multi-
media signal processing framework.

Prototype application is LLOID (a Low-Latency Online Inspiral
Data analysis application) - a stream-based version of lalapps
inspiral.

— allows for very long, low-frequency, templates

— provides sub-template latency

— allows matched-filtering across gaps in data

— multi-threaded to take advantage of multi-core CPUs

Possible Future Application

gstreamer/gstlal provides collection of “elements” that are

chained together in a graph to construct the analysis pipeline.
— highly-modular

— example elements: resampler, tee, adder, FIR filter, IIR filter, mixer.

individual elements are easily replaced with alternate implementations - e.g.,
GPU-based versions.

GPU use speculative:

thread contention for GPU is potentially a problem.
data rate on PCl bus is potentially a problem.
increasing on-device processing addresses PCl bandwidth. Possible?

gstreamer supports concept of special on-device data buffers; possibly allows
smart management of GPU RAM.

or maybe data rate on PCI bus will be fine.
many unknowns.

	Introduction to GPU
	What is GPU?
	GPU and CUDA
	CUDA Common Library
	Some CUDA SDK Examples
	CUDA in LAL - lalapps_inspiral
	lalapps_inspiral Speedup With CUFFT
	lalapps_inspiral Speedup With �CUDA Chi-square Implementation
	CUDA in LAL – Current Status
	GPU Low-Latency Inspiral Search
	GPU @ LSC
	 GPU @ LSC
	GPU @ LSC
	GPU @ LSC
	GPU @ LSC
	GPU @ LSC
	Acknowledgements
	Appendix
	GPU vs CPU
	Comparison of CPU and GPU hardware
	Graphics Cards Specification
	CUDA Quick Start Guide
	Example: Simple Number Inverter
	Example: Simple Number Inverter
	Example: Simple Number Inverter
	GPU in Science: example
	Possible Future Application
	Possible Future Application

